/**
* @file
* @brief Faster computation of Fibonacci series
*
* An efficient way to calculate nth fibonacci number faster and simpler than
* \f$O(n\log n)\f$ method of matrix exponentiation This works by using both
* recursion and dynamic programming. as 93rd fibonacci exceeds 19 digits, which
* cannot be stored in a single long long variable, we can only use it till 92nd
* fibonacci we can use it for 10000th fibonacci etc, if we implement
* bigintegers. This algorithm works with the fact that nth fibonacci can easily
* found if we have already found n/2th or (n+1)/2th fibonacci It is a property
* of fibonacci similar to matrix exponentiation.
*
* \author [Krishna Vedala](https://github.com/kvedala)
* @see fibonacci_large.cpp, fibonacci.cpp, string_fibonacci.cpp
*/
#include <cinttypes>
#include <cstdio>
#include <iostream>
/**
* maximum number that can be computed - The result after 93 cannot be stored
* in a `uint64_t` data type.
*/
#define MAX 93
/** Algorithm */
uint64_t fib(uint64_t n) {
static uint64_t f1 = 1,
f2 = 1; // using static keyword will retain the values of
// f1 and f2 for the next function call.
if (n <= 2)
return f2;
if (n >= 93) {
std::cerr
<< "Cannot compute for n>93 due to limit of 64-bit integers\n";
return 0;
}
uint64_t temp = f2; // we do not need temp to be static
f2 += f1;
f1 = temp;
return f2;
}
/** Main function */
int main() {
// Main Function
for (uint64_t i = 1; i < 93; i++) {
std::cout << i << " th fibonacci number is " << fib(i) << std::endl;
}
return 0;
}