/**
* @file
* @brief [Sudoku Solver](https://en.wikipedia.org/wiki/Sudoku) algorithm.
*
* @details
* Sudoku (数独, sūdoku, digit-single) (/suːˈdoʊkuː/, /-ˈdɒk-/, /sə-/,
* originally called Number Place) is a logic-based, combinatorial
* number-placement puzzle. In classic sudoku, the objective is to fill a 9×9
* grid with digits so that each column, each row, and each of the nine 3×3
* subgrids that compose the grid (also called "boxes", "blocks", or "regions")
* contain all of the digits from 1 to 9. The puzzle setter provides a
* partially completed grid, which for a well-posed puzzle has a single
* solution.
*
* @author [DarthCoder3200](https://github.com/DarthCoder3200)
* @author [David Leal](https://github.com/Panquesito7)
*/
#include <array> /// for assert
#include <iostream> /// for IO operations
/**
* @namespace backtracking
* @brief Backtracking algorithms
*/
namespace backtracking {
/**
* @namespace sudoku_solver
* @brief Functions for the [Sudoku
* Solver](https://en.wikipedia.org/wiki/Sudoku) implementation
*/
namespace sudoku_solver {
/**
* @brief Check if it's possible to place a number (`no` parameter)
* @tparam V number of vertices in the array
* @param mat matrix where numbers are saved
* @param i current index in rows
* @param j current index in columns
* @param no number to be added in matrix
* @param n number of times loop will run
* @returns `true` if 'mat' is different from 'no'
* @returns `false` if 'mat' equals to 'no'
*/
template <size_t V>
bool isPossible(const std::array<std::array<int, V>, V> &mat, int i, int j,
int no, int n) {
/// `no` shouldn't be present in either row i or column j
for (int x = 0; x < n; x++) {
if (mat[x][j] == no || mat[i][x] == no) {
return false;
}
}
/// `no` shouldn't be present in the 3*3 subgrid
int sx = (i / 3) * 3;
int sy = (j / 3) * 3;
for (int x = sx; x < sx + 3; x++) {
for (int y = sy; y < sy + 3; y++) {
if (mat[x][y] == no) {
return false;
}
}
}
return true;
}
/**
* @brief Utility function to print the matrix
* @tparam V number of vertices in array
* @param mat matrix where numbers are saved
* @param starting_mat copy of mat, required by printMat for highlighting the
* differences
* @param n number of times loop will run
* @return void
*/
template <size_t V>
void printMat(const std::array<std::array<int, V>, V> &mat,
const std::array<std::array<int, V>, V> &starting_mat, int n) {
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
if (starting_mat[i][j] != mat[i][j]) {
std::cout << "\033[93m" << mat[i][j] << "\033[0m"
<< " ";
} else {
std::cout << mat[i][j] << " ";
}
if ((j + 1) % 3 == 0) {
std::cout << '\t';
}
}
if ((i + 1) % 3 == 0) {
std::cout << std::endl;
}
std::cout << std::endl;
}
}
/**
* @brief Main function to implement the Sudoku algorithm
* @tparam V number of vertices in array
* @param mat matrix where numbers are saved
* @param starting_mat copy of mat, required by printMat for highlighting the
* differences
* @param i current index in rows
* @param j current index in columns
* @returns `true` if 'no' was placed
* @returns `false` if 'no' was not placed
*/
template <size_t V>
bool solveSudoku(std::array<std::array<int, V>, V> &mat,
const std::array<std::array<int, V>, V> &starting_mat, int i,
int j) {
/// Base Case
if (i == 9) {
/// Solved for 9 rows already
printMat<V>(mat, starting_mat, 9);
return true;
}
/// Crossed the last Cell in the row
if (j == 9) {
return solveSudoku<V>(mat, starting_mat, i + 1, 0);
}
/// Blue Cell - Skip
if (mat[i][j] != 0) {
return solveSudoku<V>(mat, starting_mat, i, j + 1);
}
/// White Cell
/// Try to place every possible no
for (int no = 1; no <= 9; no++) {
if (isPossible<V>(mat, i, j, no, 9)) {
/// Place the 'no' - assuming a solution will exist
mat[i][j] = no;
bool solution_found = solveSudoku<V>(mat, starting_mat, i, j + 1);
if (solution_found) {
return true;
}
/// Couldn't find a solution
/// loop will place the next `no`.
}
}
/// Solution couldn't be found for any of the numbers provided
mat[i][j] = 0;
return false;
}
} // namespace sudoku_solver
} // namespace backtracking
/**
* @brief Main function
* @returns 0 on exit
*/
int main() {
const int V = 9;
std::array<std::array<int, V>, V> mat = {
std::array<int, V>{5, 3, 0, 0, 7, 0, 0, 0, 0},
std::array<int, V>{6, 0, 0, 1, 9, 5, 0, 0, 0},
std::array<int, V>{0, 9, 8, 0, 0, 0, 0, 6, 0},
std::array<int, V>{8, 0, 0, 0, 6, 0, 0, 0, 3},
std::array<int, V>{4, 0, 0, 8, 0, 3, 0, 0, 1},
std::array<int, V>{7, 0, 0, 0, 2, 0, 0, 0, 6},
std::array<int, V>{0, 6, 0, 0, 0, 0, 2, 8, 0},
std::array<int, V>{0, 0, 0, 4, 1, 9, 0, 0, 5},
std::array<int, V>{0, 0, 0, 0, 8, 0, 0, 7, 9}};
backtracking::sudoku_solver::printMat<V>(mat, mat, 9);
std::cout << "Solution " << std::endl;
std::array<std::array<int, V>, V> starting_mat = mat;
backtracking::sudoku_solver::solveSudoku<V>(mat, starting_mat, 0, 0);
return 0;
}